医学統計セミナー2018第2回目

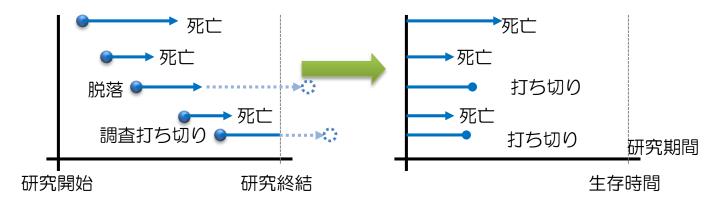
生存時間・臨床検査値の評価

吉川隆範

和歌山県立医科大学 臨床研究センター

2018年度 医学統計セミナー

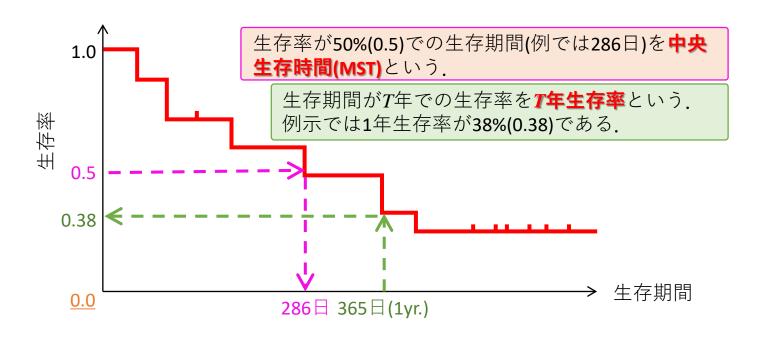
11月8日(木) 吉川(隆)	量的変数・質的変数の評価
12月21日(金) 吉川(隆)	生存時間・臨床検査値の評価
1月17日(木) 吉川(隆)	多変量解析と統計的因果推論
2月5日(火) 下川先生	観察研究と傾向スコア分析
3月26日(火) 下川先生	メタアナリシス


第2回:目次

- 1.生存時間データの要約 カプランマイヤー(Kaplan-Meier)曲線
- 2.生存時間データの統計的仮説検定 ログランク検定
- 3.臨床検査データの解析ROC曲線

1.生存時間データの要約

生存時間データの特徴

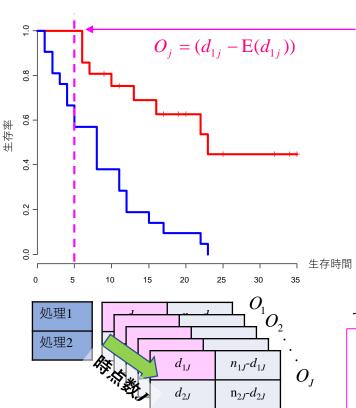

生存時間研究では、殆どの場合、不完全データを含んでいる.

生存時間データは、個体の死亡(あるいは故障)までの時間を観測して得られる。 観測される生存時間は生存時間(確率変数)Tの実現値tであるか、あるいは中途打ち切りが生じたときには、その中途打ち切り(打ち切りともいう)(censoring)時点の値である。

打ち切り:個体の登録時点はわかるものの、追跡期間中に死亡(event)が起こらなかっとことを表す。

生存時間曲線の推定:Kaplan-Meier法

ハザード比


ハザード(危険度) $\lambda(t)$ とは「時間tまで患者が生存しているという条件のもとで、時間tで死亡する確率」を表す。つまり、時間tでの死亡リスクである。

ハザード比(相対危険度)とはハザードの比である。例えば、既存薬のハザードに対する新薬のハザードでのハザード比は

ハザード比
$$HR(t)$$
= 新薬でのハザード $\lambda_1(t)$ 既存薬でのハザード $\lambda_0(t)$

2.生存時間データの仮説検定

ログランク検定とは何をしているか?

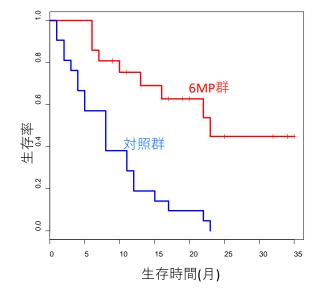
ある時点 t_i における死亡・生存に対するクロス集計表

	死亡	生存	合計
処理 1	d_{1j}	$n_{1j} - d_{1j}$	n_{1j}
処理 2	d_{2j}	$n_{2j}-d_{2j}$	n_{2j}
合計	\overline{d}_{j}	$n_j - d_j$	n_{j}

もし,処理1と処理2で死亡数が同じであれば(つまり処理効果がなければ), ■の期待度数は,カイ2乗検定と同じ理屈から

$$E(d_{1j}) = \frac{d_j n_{1j}}{n_j}$$

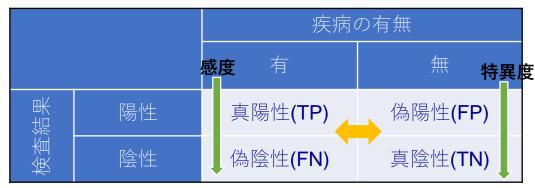
である.期待度数からの乖離


上記の 2×2 クロス集計表の \blacksquare 部分をすべての時点において計算し、その総和をとる $O_1 + O_2 + \cdots + O_J$ ことで構成されたのが、ログランク検定である.

2標本の比較の例示

小児急性白血病データ (Freireich *et al.*, 1963)

6MP群	6	6	6	6+	7	9+	10	10+
	11+	13	16	17+	19+	20+	22	23
	25+	32+	32+	34+	35+			
対照群	1	1	2	2	3	4	4	5
	5	8	8	8	8	11	11	12
	12	15	17	22	23			


+は中途打ち切り、単位は月

ログランク検定 p<0.0001

3. 臨床検査データの要約

カテゴリカルデータ(定性テスト)の評価

疾患の有無には有病率が関係する

- 真陽性(TP,true positive):疾患有の被験者を<mark>陽性</mark>と正しく診断すること.
- 偽陰性(FN,flase negative):疾患有の被験者を陰性と誤って診断すること.
- 真陰性(TN):疾患無の被験者を**陰性**と正しく診断すること.
- 偽陽性(FP):疾患無の被験者を<mark>陽性</mark>と誤って診断すること.

<u>感度(Sensitivity)</u>

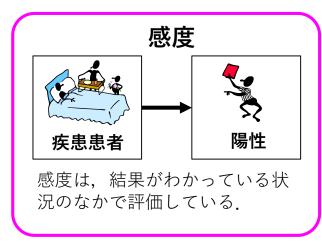
感度 = TP/(TP+FN):疾患有の被験者を**陽性**と正しく判断する確率

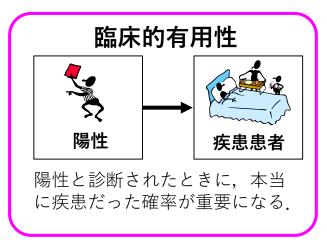
特異度(Specificity)

特異度 = TN/(TN+FP): 疾患無の被験者を**陰性**と正しく判断する確率

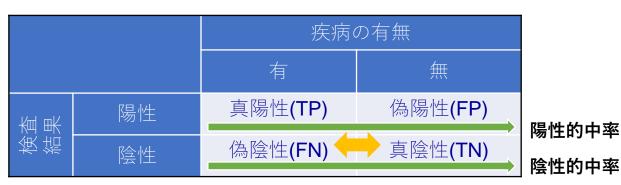
感度・特異度の留意点

感度(Sensitivity)


感度 = TP/(TP+FN):疾患有の被験者を陽性と正しく判断する確率

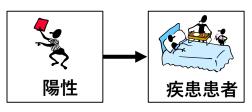

特異度(Specificity)

特異度 = TN/(TN+FP): 疾患無の被験者を陰性と正しく判断する確率


利点: 当該疾患の有病率(prevalence)に影響されず診断性能を評価できる.

注意点:「感度≠疾患の確率」であることに注意する.

陽性的中率(陽性予測值)· 陰性的中率(陰性予測值)


疾患の有無には有病率が関係する

陽性的中率(positive predictive value)

陽性的中率 = TP/(TP+FP): 陽性の被験者のなかで疾患有の確率

陰性的中率(Specificity)

陰性的中率 = TN/(TN+FN): 陰性の被験者のなかで疾患無の確率

利点:臨床的有用性は陽性的中率で評価できる.

注意点:これらの指標は,有病率の影響を受け

感度・特異度と陽性的中率・陰性的中率の関係

感度・特異度と陽性的中率・陰性的中率の関係は、Bayesの定理を用いて計算できる.

陽性的中率 = 有病率 × 感度

(有病率 × 感度) + (1-有病率)×(1-特異度)

この数式からも陽性的中率では有病率が問題になることがわかる.

余談

Thomas Bayes (1702-1761)

Bayesの定理とは、Thomas Bayesによって発見された 定理である.このBayesの定理を用いる統計学のことを Bayes統計学という.

その利点は、データ以外の知識・経験などの様々な情報を事前情報として、未治療の推測のために活用できる。また、新たなデータを得たときには、これを事前情報(事前分布)として取り込むことができる。

Bayesの定理そのものは、300年近くまえに発見されたものだが、近年Bayes統計学が脚光を浴び、医学・薬学分野にも広く応用されている。

例示:疑似データ(新谷, 2016)

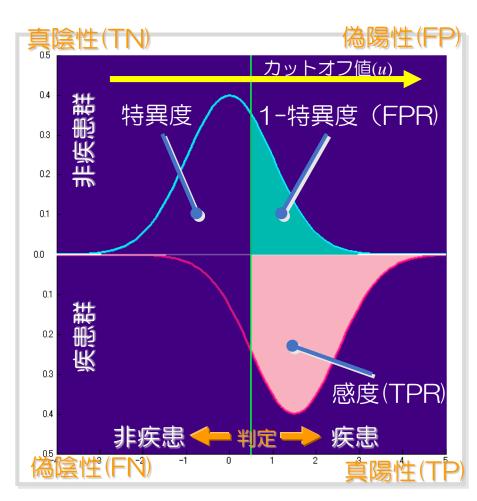
		疾病(合計	
		有無無		口司
₩ ₩	陽性	24 (TP)	19 (FP)	43 (TP+FP)
後	陰性	16 (FN)	941 (FP)	957 (FN+FP)
	合計	40 (TP+FN)	960 (FP+FP)	1,000

<u>感度(Sensitivity)</u>

感度(TPR) = TP/(TP+FN) = 24/40 = 0.60

特異度(Specificity)

特異度(TNR) = TN/(TN+FP) = 941/960 = 0.98


陽性的中率(positive predictive value)

陽性的中率 = TP/(TP+FP) = 24/43 = 0.56

陰性的中率(Specificity)

陰性的中率 = TN/(TN+FN) = 941/957 = 0.98

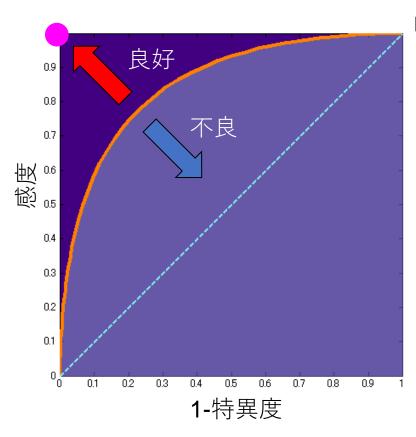
ROC曲線

真陽性

疾患群において、カットオフ値(u)以上となる.

偽陽性

疾患群において、カットオフ値(u)未満となる。


真陰性

非疾患群において、カットオフ値(u)以上となる。

偽陰性

非疾患群において、カットオフ値(u)未満となる.

ROC曲線

ROC曲線

カットオフ値uを小さいほうから大きいほうに動かしたときの,

(1-特異度,感度)

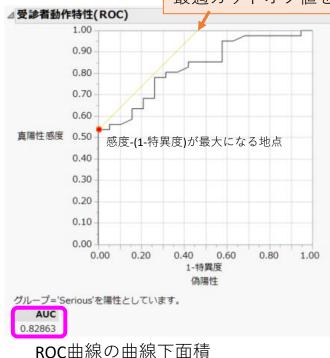
をプロットしたものがROC曲線である。

ROC曲線は, 45度の直線に対して扇型の形状を示す. 座標(0,1)[○で表された場所]に近くなるほど良好な診断であるといえる.

曲線化面積AUC

ROC曲線の曲線以下の面積である (■の面積). 複数の検査を比較したり, 診断能を数値化するのに用いられる.

事例に対するROC曲線


■頭部外傷症データ(Zhou, *et al.*,2002)

頭部外傷症の重篤度を識別するために、CK-BB(クレアチン・キナーゼBB)が有効か否かを判定している。ここに、重篤度は、重度および非重度の2値とする。Zhou $et\ al.$ (2002)は、CK-BBが成人での重篤度の判定だけでなく、未成人においても利用可能であるか否かを検討している。

重症群						非重症群	
140	740	543	490	523	136	60	46
1087	126	913	156	76	286	17	
230	153	230	356	303	281	27	
183	283	463	350	353	23	126	
1256	90	60	323	206	200	100	
700	303	509	1560		146	253	
16	193	576	120		220	70	
800	76	671	216		96	40	
253	1370	80	443		100	6	

ROC曲線の結果

ROC曲線に接する45度の直線であり、 最適カットオフ値を示す指標の一つ

最適カットオフ値にはROCテーブルのなかに*印がついている.

ROCテーフ	"וע"							
X	確率	1-特異度	感度	感度-(1-特異度)	真陽性	真陰性	偽陽性	偽陰性
1560.000	1.0000	0.0000	0.0244	0.0244	1	19	0	40
1370.000	1.0000	0.0000	0.0488	0.0488	2	19	0	39
1256.000	1.0000	0.0000	0.0732	0.0732	3	19	0	38
1087.000	0.9999	0.0000	0.0976	0.0976	4	19	0	3
913.000	0.9994	0.0000	0.1220	0.1220	5	19	0	3
800.000	0.9983	0.0000	0.1463	0.1463	6	19	0	3
740.000	0.9969	0.0000	0.1707	0.1707	7	19	0	3
700.000	0.9956	0.0000	0.1951	0.1951	8	19	0	3
671.000	0.9942	0.0000	0.2195	0.2195	9	19	0	3
576.000	0.9860	0.0000	0.2439	0.2439	10	19	0	3
543.000	0.9810	0.0000	0.2683	0.2683	11	19	0	3
523.000	0.9772	0.0000	0.2927	0.2927	12	19	0	2
509.000	0.9741	0.0000	0.3171	0.3171	13	19	0	2
490.000	0.9692	0.0000	0.3415	0.3415	14	19	0	2
463.000	0.9607	0.0000	0.3659	0.3659	15	19	0	2
443.000	0.9530	0.0000	0.3902	0.3902	16	19	0	2
356.000	0.8998	0.0000	0.4146	0.4146	17	19	0	2
353.000	0.8972	0.0000	0.4390	0.4390	18	19	0	2
350.000	0.8946	0.0000	0.4634	0.4634	19	19	0	2
333 000	0.8683	0.0000	0.4878	0 4878	20	10	0	2
303.000	0.8454	0.0000	0.5366	0.5366 *	22	19	0	1
286.000	0.8234	0.0526	0.5366	0.4840	22	18	1	1
283.000	0.8193	0.0526	0.5610	0.5083	23	18	1	1
281.000	0.8165	0.1053	0.5610	0.4557	23	17	2	1
253.000	0.7740	0.1579	0.5854	0.4275	24	16	3	1
230.000	0.7342	0.1579	0.6341	0.4763	26	16	3	1
220.000	0.7156	0.2105	0.6341	0.4236	26	15	4	1

ご清聴ありがとうございました

